Artificial Intelligence Lab

Practical File

Name Ashish Chauhan

Roll Number 05619051723

Branch 110T-B1-23

School University School of Automation & Robotics
University Guru Gobind Singh Indraprastha University

INDEX

S No.

Experiment

Sign.

Experiment — 1

Aim: For given 2 jugs with capacities 5 liters and 3 liters and an infinite
water supply. Determine how the total amount of water in both the jugs
may reach 4 liters.

Program:

x=0
y=o
print(f"Initial State: (3 Litre jug : {x} , 5 litre jug : {y})")

while y!=4:
if y==

y=5
print(f"Fill 5 Litre jug: 3 litre jug: {x}, 5 Litre jug : {y}")

elif x<3:

transfer = min (3-x , y)

x+= transfer

y-=transfer

print(f"Pour from 5 litre jug to 3 litre jug : 3 litre jug : {x} , 5 litre jug : {y}")

elif x==3:

xX=0
print(f"Empty 3 litre jug : 3 Litre jug : {x} , 5 Litre jug

print(f"Goal reached : 3 litre jug : {x} , 5 litre jug :

Output:

Initial State: (3 Litre jug : @ , 5 litre jug : ©)

Fill 5 Litre jug: 3 litre jug: @, 5 Litre jug : 5

Pour from 5 litre jug to 3 litre jug : 3 litre jug : 3 , 5 litre jug :
Empty 3 litre jug : 3 Litre jug : © , 5 Litre jug : 2

Pour from 5 litre jug to 3 litre jug : 3 litre jug : 2 , 5 litre jug :
Fill 5 Litre jug: 3 litre jug: 2, 5 Litre jug : 5
Pour from 5 litre jug to 3 litre jug : 3 litre jug : 3 , 5 litre jug :
Goal reached : 3 litre j : 3 , 5 litre j : 4

Description:

Fill the 3-liter jug completely.

Pour the 3 liters from the 3-liter jug into the 5-liter jug.
Fill the 3-liter jug again completely.

Carefully pour water from the 3-liter jug into the 5-
liter jug untilthe 5-liter jug is full. Since the 5-liter
jug already has 3 liters, youcan only add 2 more
liters before it’s full.

You’ll have exactly 1 liter of water left in the 3-liter jug.
Empty the 5-liter jug.

Pour the remaining 1 liter of water from the 3-liter

jug into theempty 5-liter jug.

Fill the 3-liter jug completely again.

Pour the 3 liters from the 3-liter jug into the 5-

liter jug, whichalready contains 1 liter.

Now, the 5-liter jug contains exactly 4 liters of water.

This method uses the 3-liter jug first and allows
you to measure out 4liters accurately in the 5-liter

jug.

Experiment — 2
Aim: 8- Puzzle Problem

Program:

def print_matrix (matrix):
for row in matrix:
print(row)

find_zero (matrix):
for row_index, row in enumerate(matrix):
for col_index, value in enumerate(row)
if value ==0
return (row_index, col_index)
return None

operation (A, i, j, action)
if action == 1 and i > O:

A[i-11[3]1, A[i1[3] = A[i1[3], A[i-1]1[3]
elif action ==2 and i < 2:

A[i+11[31, A[i][3] = A[i]1[3], A[i+1][3]
elif action == 3 and > 0:

A[i1[3-11, A[Li][3] A[i1[31, A[i][3-1]
elif action == 4 and j <2 :

A[i][3+1], A[i1[3] = A[i]1[3], A[i][j+1]

print(“Invalid Input")
return A
[[1, 2, 31, [
[[1,2,3]1, [4,5
print(“Actual Matrix")
print_matrix(A)
print(“Goalstate Matrix™)
printimatrix(G)
while A != G
print_matrix(A)
print(“Choose 1.Up 2. Down 3. Left 4. Right™)
action = int(input(“Choose the action you want to perform:
if action in [1,2,3,4]:
i,j = find_zero(A)
A = operation (A, i, j, action)

print(“Invalid Attempt™)
print(“"Matrix is Transformed")

Actual Matrix
[1, 2, 3]

[7, 8,
Goalstate Matrix

1.Up 2. Down 3. Left 4. Right

the action you want to perform: 4
3]

o]

6]

1.Up 2. Down 3. Left 4. Right

the action you want to perform: 2
is Transformed

Description:

e Display each row of the matrix to show its current
state.

e |terate through the matrix to locate the position of
the O element.

e |f the user chooses to move the zero up, swap the
zero with the element directly above it.

e |f the user chooses to move the zero down, swap
the zero with the element directly below it.

e |f the user chooses to move the zero left, swap the
zero with the element directly to the left.

e |f the user chooses to move the zero right, swap the
zero with the element directly to the right.

e [f the input is invalid, display an error message.

e Display the initial matrix and the goal matrix to the
user.

e Continue printing the matrix and asking for user
input until the current matrix matches the goal
matrix.

e After each operation, display the current state of
the matrix.

e Ask the user to choose an action (up, down, left, or
right) to move the zero.

e L ocate the zero and execute the chosen operation to
update the matrix.

e |f the user input is not valid, display an error
message and prompt again.

e Once the matrix matches the goal state, print a
success message indicating that the matrix has been
transformed.

Experiment — 3

Aim -To Understand the Concept Breadth First Search
Program:

visited []
queue []

bfs(visited, graph, node):
visited. (node)
queue. (node)

queue:
queue. (0)
(m, end k)

neighbour graph[m]:
neighbour visited:
visited. (neighbour)
queue. (neighbour)

FOLl1lOo 1 (
bfs(visited, graph, 'A")

Description

The graph is defined as a dictionary where keys
represent nodes and values are lists of adjacent nodes.
Empty lists visited and queue are created to keep track of
visited nodes and nodes to be explored, respectively.
The function takes the visited list, the graph dictionary,

and the starting node as input.

The starting node is added to the visited list and the
queue.

While the queue is not empty:

The first element m is popped from the queue.
M is printed as a visited node.

For each neighbor of m in the graph.

If neighbor is not in the visited list.

Neighbor is added to the visited list and the queue
The BFS function is called with the initial visited list
the graph, and the node ‘A’. The function prints the

nodes visited in BFS order.

Experiment — 4

Aim: To understand the concept of depth search function

Program:

visited []
dfs(graph, start, visited
visited -
visited ()

visited. (start)
(start, end=" ")

neighbor graph[start]:
neighbor visited:

dfs(graph, neighbor, visited)
A')

B

. .Program finished

‘ress ENTER to exit

Description

The graph is defined as a dictionary where keys represent
nodes and values are lists of adjacent nodes.

An empty list visited is created to keep track of visited nodes.
The function takes the graph dictionary, the starting

node, and an optional visited set as input.

If visited is not provided, it creates a new set.

The current node is added to the visited set.
The current node is printed.
For each neighbor of the current node:

If the neighbor is not in the visited set, recursively calls the
DFS function with the neighbor.

The DFS function is called with the initial visited list, the
graph, and the starting node ‘A’. The function prints the
nodes visited in DFS order.

Experiment — 5

Aim: To implement graph colouring algorithm in
python

Program:

def graph_coloring(graph)
colors = {}
available colors = set(range(len(graph)))

for node in graph:
neighbor colors = set(colors.get(neighbor) for neighbor in graph[node] if neighbor in colors)
available colors for node = available colors - neighbor colors
if not available colors for node:
return None
colors[node] = min(available colors for node)
return colors

graph = {

}
coloring = graph_coloring(graph)

if coloring:
print("Graph is colorable:")
for node, color in coloring.items()
print(f“{node}: {color}")
else:
print("Graph is not colorable™)

Description:

Takes a graph as input and returns a dictionary of assigned
colours or None if the graph is not colourable.

Stores assigned colours for each node.

Contains all available colours.

Find the colours of adjacent nodes.

Calculate available colours for the current node. If no
colours are available, the graph is not colourable.

Assign the minimum available colour to the node.

If the graph is colourable, return the assigned colours.
Otherwise, return None.

Experiment No: 6

Aim: To perform A* Search Algorithm in a provided
path/graph

Program:

import heapq

def a_star arch(graph, start, goal)
open_set = [(@, start)
closed_set = se
came_from =

while open_set:
nt_node = heapq.heappop(open_set)[1]
f current_node goal:
return reconstruct_path({came_from, start, goal)
closed_set.add(current_
for neighbor, dist h[c 1t_node].items()
tentative g score = g_scores[current_node] + distanc
if neigh in closed set and tentative g score g_scores[neighbor]
continue
if neighbor not in open_set or tentative g score < g scores[neighbor]:
came_from[neighbor] = current_node
g scores[neighbor] = tentative g score
_scores[neighbor] = g scores[neighbor] + heuristic(neighbor, goal)
pq.heappush(open_set, (f_scores[neighbor], neighbor))
return None

reconstruct_path(came from, start, goal)
current = goal
path = [current]
while current I= start:
current = came_from[curi
path.append(current)
path.reverse()

start =
goal = 'E'
istic = lambda node, goal: abs(ord(node) -
a_star_search(graph, start, goal)

print(“shortest path:", path)
[ETH

print(“No path found.™)

Description:

Initializes open set, closed set, came from, g scores,
and f scores.

Iterates over open set until the goal is reached or open
set is empty.

Explores neighbors of the current node, updates g
scores, T scores, and came from, and adds eligible
neighbors to open set.

Reconstructs the path using reconstruct path if the goal
IS reached.

Traces back from the goal to the start using came from
to reconstruct the path.

Defines a sample graph, start node, goal node, and a
heuristic function.

Calls a star search to find the shortest path.

Prints the path or a message indicating no path found.

Experiment No: 7

Aim: To perform operations on array using Numpy.

Theory: NumPy is a Python library for numerical computing that
provides efficient handling of large, multi-dimensional arrays and
matrices. It offers mathematical functions, linear algebra
capabilities, and powerful tools for array manipulation. NumPy is
essential for scientific computing, data analysis, and machine
learning, serving as a foundation for many other libraries.

Program:

import numpy as np

a=np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])

print("Array :\n" , a)

print("Slicing of 2-d array :\n" ,a[0:4:2,0:4:2])

print(“"The dimensions of array :" ,a.ndim)

print("The shape of array :" , a.shape)

print("The size of the array is: ", a‘sizeb

print("The largest element in the array :", a.max())
print("The smallest element in the array :", a.min())
print("The mean of elements in the array :", a.mean())
print("The diagonal elements of the array :\n" , a.diagonal())
print(“"The sum of elements of the array :\n" , a.sum())

print(“"The data type of element entries in the array :" , a.dtype)

print("Array with only ones : \n" , np.ones([3,3], int))
print("Array with diagonal elements as 1 : \n" , np.eye(3,3,0,int))

x= np.array([[9,44,33,66],[22,41,30,43],[60,80,90,100],[10,11,12,13]])
print("Given Array : \n" ,x)

print("Slicing 2-d array : \n", x[2:4,1:3])

print("Sliced array : ", x[2:3])

print(“"Sliced array : ", x[2:3,1:3])

print(“"Sliced array : \n", x[0:3,0:1])

print(“"Sliced array : ", x[1:2,1:4:2])

2-d array

dimensions of array : 2
shape of array : (4, 4)
size of the array is: 16
largest element in the array : 16
smallest element in the array : 1
mean of elements in the array : 8.5
diagonal elements of the array
6 11 16]
The sum of elements of the array
136
The data type of element entries in the array
Array with only ones
[[111]
[111]
[111]]
Array with diagonal elements as 1
[[1 e o]
[e 1 @]
[0 @ 1]]
Given Array
[[2 aa
[22 a1 3e 4a3]
[66 80 9@ 108]
[18 11 12 13]]
slicing 2-d array
[[8e 90]
[11 12]]
Sliced array : 60 80 90 188]]
Sliced array :
sliced array
[[2]
[22]
[60]]

Sliced array

int32

Description: Numpy is a powerful Python library for
numerical computing, offering a wide range of functions and
tools for efficiently handling and manipulating numerical data.
It's a cornerstone of many scientific computing and data
analysis applications. Key features and uses of Numpy:

Multidimensional Arrays: Numpy's primary data structure
Is the ndarray, which can represent arrays of arbitrary
dimensions. This makes it ideal for handling matrices,
vectors, and higher-dimensional data.

Efficient Operations: Numpy performs mathematical
operations on arrays much faster than Python's built-in
lists, thanks to its optimized C implementation. This is
crucial for large-scale numerical computations.

Broadcasting: Numpy's broadcasting mechanism allows
for automatic element-wise operations between arrays of
different shapes, simplifying calculations and reducing
code complexity.

Linear Algebra: Numpy provides a rich set of functions for
linear algebra operations, including matrix multiplication,
inversion, eigenvalue decomposition, and more.

Random Number Generation: Numpy's random module
offers a variety of functions for generating random
numbers from different distributions, essential for
simulations and statistical analysis.

Fourier Transforms: Numpy's fft module implements
efficient algorithms for computing Fourier transforms, a
fundamental tool in signal processing and image analysis.

Integration with Other Libraries: Numpy seamlessly
integrates with other popular Python libraries like SciPy,
Matplotlib, and Pandas, making it a versatile tool for
scientific computing and data analysis workflows.

Experiment No: 8

Aim: To use Pandas in python and create data
frames using the same along with the use of
sklearn.

Theory: Pandas is a Python library for data
manipulation, offering DataFrames for
efficient handling of structured data. It
enables data cleaning, transformation, and
analysis. Scikit-learn complements Pandas by
providing machine learning algorithms and
model evaluation tools, facilitating seamless
workflows for data preprocessing, analysis,
and model training in data science.

s X 4 columns]
sepal_width petal_length petal_width
6. 2.

7.

3
3
3
3.
3
3
3
23
3
3
3
23
3
3

1 columns]

2
2
2
2
2

1.8

Process finished with exit code 8

Description: Pandas is a powerful Python library for data
manipulation and analysis. It offers:

1.

Data Structures: The two main structures are Series (1D) and
Data Frame (2D), which allow you to work with labelled data
like Excel tables or SQL databases.

. Data Handling: Pandas simplifies tasks like importing /

exporting data, cleaning missing values, filtering rows /
columns, and transforming datasets.

. Aggregation and Grouping: It allows you to easily group

data by columns and apply functions like sum, mean, or count
to analyse large datasets.

Merging and Time-Series: Pandas supports merging/joining
multiple datasets and has excellent tools for working with
time-series data.

Ques)Given a classification dataset containing over 15,000 rows and at least 5 columns, the
following tasks need to be performed: First, display the dataset's keys, shape, size, mean, and
standard deviation. Then, split the dataset into features and target variables, followed by applying
train-test splits with the ratios of 60:40, 70:30, and 80:20. If necessary, perform label encoding.
Next, apply the K-Nearest Neighbors (KNN) classifier to the dataset and evaluate the model's
performance using metrics such as accuracy, confusion matrix, and classification report.

import pandas as pd

import numpy as np

from sklearn.model_selection impeort train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics impeort accuracy_score, confusion_matrix, classification_report
import seaborn as sns

import matplotlib.pyplot as plt

Step 1: Load the Dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
column_names = | 'fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar',

"chlorides', 'free_sulfur_dioxide', 'total_ sulfur_dioxide', 'density',

' '

pH",
data = pd.read_csv(url, sep=';', names=column_names, header=@)

"sulphates’, "alcohol', 'quality"']

Step 2: Display Data Shape, Size, Mean, Standard Deviation
print("Data Shape:", data.shape)

print("Data Size:", data.size)

print("Mean:\n", data.mean())

print("Standard Deviation:\n", data.std())

Step 3: Dividing the dataset into features and target
features = data.drop('quality', axis=1)
target = data['quality']

Step 4: Train-Test Split and Performance Analysis
splits = [(@.5, @.4), (0.7, 0.3), (0.8, 0.2)]
results = {]

for train_size, test_size in splits:
X train, X test, y train, y test = train test split(features, target, train size=train size, random state=42)
Step 6: KNN cLassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

Step 7: Performance Analysis

y_pred = knn.predict(X test)

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

class_report = classification_report(y_test, y_pred)

results[train_size] = {
'accuracy': accuracy,
'confusion_matrix': conf_matrix,

'classification_report': class_report

Print results

for train_size, metrics in results.items():
print(f"\nTrain Size: {train_size*100:.@f}%")
print("Accuracy:", metrics['accuracy'])
print("Confusion Matrix:\n", metrics['confusion_matrix'])

print("Classification Report:\n", metrics['classification_report'])

Optional: Visualizing the Confusion Matrix

plt.figure(figsize=(10, 7))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=np.unique(target), yticklabels=np.unique(target))
plt.xlabel('Predicted Quality')

plt.ylabel({'True Quality"')

plt.title('Confusion Matrix')

plt.show()

OUTPUT

Data Shape: (1599, 12)

Data Size: 19188
Mean:

fixed_acidity
volatile_acidity
citric_acid
residual_sugar
chlorides
free_sulfur_dioxide
total_sulfur_dioxide
density

pH

sulphates

alcohol

quality

dtype: floatsd
Standard Deviation:
fixed_acidity
volatile_acidity
citric_acid
residual_sugar
chlorides
free_sulfur_dioxide
total_sulfur_dioxide
density

pH

sulphates

alcohol

quality

dtype: floated

@ N O

15.

16

8.
3.
a.

18

5.

@ P OQ

1e

32.

[~ T <~ v B)

8.319637
.527821
.278976
.538886
.BB87467
874922
.A67792
996747
311113
658149
L422983
636823

1.741896
.179868
.194801
.489928
.B47865
.460157
895324
.ee18s87
.154386
.169587
.BB5668
.887569

Train Size: 60%
Accuracy: ©.4921875

Confusion Matrix:
[& © 2 o o 0]

[@ 1 10 11 1 @]
[@ 1166 105 6 @]
[@ 1162 134 11 8]
[@ e 19 48 14 @]

[@ 0 2 & 0 ©]]
Classification Report:

precision recall fl-score

3 8.80 9.080 B8.80

4 8.33 8.84 .88

5 8.55 9.60 @.57

6 8.44 8.54 .49

7 8.44 8.17 @.25

8 8.80 8.80 B.80

accuracy .49
macro avg 9.29 9.23 @.23
weighted avg 0.48 0.49 647

Train Size: 70%
Accuracy: ©.48541666666666666
Confusion Matrix:

[[[@6 © 1 © 6 8]

[7 9 @ @]
126 64 4 e]

89 97 12 a]

18 34 9 e]

1 4 1 e]]

rﬂr—1r1rﬂ
e cv B v I o R
® @ MR e

support

23
278
248

81

640
048
640

Classification

QNN W

accuracy
macro avg

weighted avg

Train Size: 80%
Accuracy: 0.456
Confusion Matri
[[e @ 1 @
[® 5 5

@ 82 44
2 65 59
0 14 22
e 1 3

2]
2]
a
<]
2]
ssification

[
[
[
[
1

Cla

NV AW

accuracy
macro avg
weighted avg

True Quality
5
1

6
'

Report:

precision recall fl-score
9.00 a.e8 0.e0
9.25 a.e6 8.10
9.52 8.65 8.58
@.47 .48 9.48
9.35 a.15 8.21
9.00 a.e8 0.80

0.49

9.26 a.22 8.23
9.456 a.49 0.46

25

x:

8 o]

8 o]

4 @]

6 @]

5 1]

1 8]]

Report:

precision recall fl-score
9.00 9.00 0.0
9.00 9.00 0.0
9.49 @.63 8.55
9.44 @.45 0.45
9.31 9.12 9.17
9.00 9.00 0.0

0.46

9.21 9.20 8.19
9.42 .46 8.43
0 0
0 0
0 0
0 2
0 0
0 0
] |
3 4

support

1
17
195
200
61
6

438
488
488

support

1
ie
13e
132
42
5

320
328
328

Confusion Matrix

14 22
! =]
I 1
5 6

Predicted Quality

80

70

60

- 20

-10

	2ebdfc52264d83a8735030df44d3d24b5db4977cfc2299d8a920df842af994e6.pdf

