

Guru Gobind Singh Indraprastha University

University School of Automation & Robotics

Data Structures Lab (ARI254)

Practical File

Name	Sujal Singh
Enrollment Number	04119051723
Batch	IIOT-B1-23

Index

No.	Question	Remarks
1.	Write C programs by using Array data structure for the following problem domains:	
	(a) Create an array of integer with size n . Return the difference between the largest and the smallest value inside that array.	
	(b) Initializes an array with ten random integers and then prints four lines of output, containing: Every element at an even index, Every odd element, All elements in reverse order, Only the first and last element.	
	(c) Consider an integer array of size 5 and display the following: Sum of all the elements, Sum of alternate elements in the array, and second- highest element in the array.	
	Write a program to create a singly linked list of n nodes and per- form:	
2.	(a) Insertion at the beginning.	
	(b) Insertion at the end.	
	(c) Insertion at a specific location.	
	(d) Deletion at the beginning.	
	(e) Deletion at the end.	
	(f) Deletion At a specific location.	
3.	Write a program to create a doubly linked list of n nodes and perform:	
	(a) Insertion at the beginning.	
	(b) Insertion at the end.	
	(c) Insertion at a specific location.	
	(d) Deletion at the beginning.	
	(e) Deletion at the end.	
	(f) Deletion At a specific location.	

	Write a program to create a singly circular and doubly linked list of n nodes and perform:	
	(a) Insertion at the beginning.	
	(b) Insertion at the end.	
4.	(c) Insertion at a specific location.	
	(d) Deletion at the beginning.	
	(e) Deletion at the end.	
	(f) Deletion At a specific location.	
5.	Write a program to implement stack using arrays and linked lists.	
6.	Write a program to reverse a sentence/string using stack.	
7.	Write a program to check for balanced parenthesis in a given expression.	
8.	Write a program to convert infix expression to prefix and postfix expression.	
9.	Write a program to implement Linear Queue using Array and Linked Lists.	
10.	Write a program to implement Circular Queue using Array and Linked Lists.	
11.	Write a program to implement Doubly Ended Queue using Array and Linked Lists.	
12.	Write a Program to implement Binary Search Tree operations.	
13.	Write a program to implement Bubble Sort, Selection Sort, Heap Sort, Quick Sort, Merge Sort and Insertion Sort algorithm.	
14.	Write C Programs by using Graph data structure for the following problem domains:	
	(a) Graph Traversal: BFS	
	(b) Graph Traversal: DFS	

Aim:

Write C programs by using Array data structure for the following problem domains:

- (a) Create an array of integer with size n. Return the difference between the largest and the smallest value inside that array.
- (b) Initializes an array with ten random integers and then prints four lines of output, containing: Every element at an even index, Every odd element, All elements in reverse order, Only the first and last element.
- (c) Consider an integer array of size 5 and display the following: Sum of all the elements, Sum of alternate elements in the array, and second-highest element in the array.

Program (a):

```
#include <stdio.h>
1
2
3
    int main() {
        int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
4
        int n = (int) (sizeof(arr) / sizeof(int));
5
6
        int min = 0, max = 0;
7
8
        for (int i = 0; i < n; i++) {</pre>
9
             if (arr[i] < min)</pre>
10
                 min = arr[i];
11
             if (arr[i] > max)
12
                 max = arr[i];
13
        }
14
15
        printf("Minimum = %d; Maximum = %d; Difference = %d", min, max,
16
         \rightarrow max-min);
17
18
        return 0;
19
   }
  Output (a):
   Minimum = 0; Maximum = 10; Difference = 10
```

Program (b):

```
1 #include <stdio.h>
2
3 int main() {
4     int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
5     int n = (int) (sizeof(arr) / sizeof(int));
6
7     printf("Elements at an even index: ");
```

```
for (int i = 0; i < n; i += 2) {</pre>
8
           printf("%d, ", arr[i]);
9
       }
10
       printf("\n");
11
12
13
       printf("Odd numbers: ");
       for (int i = 0; i < n; i++) {</pre>
14
            if (arr[i] % 2 != 0)
15
                printf("%d, ", arr[i]);
16
       }
17
       printf("\n");
18
19
20
       printf("Reverse order: ");
       for (int i = n - 1; i >= 0; i--) {
21
            printf("%d, ", arr[i]);
22
       }
23
       printf("\n");
24
25
       printf("First: %d; Last: %d; \n", arr[0], arr[n - 1]);
26
27
28
       return 0;
29 }
 Output (b):
1 Elements at an even index: 1, 3, 5, 7, 9,
  Odd numbers: 1, 3, 5, 7, 9,
2
  Reverse order: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
3
```

```
4 First: 1; Last: 10;
```